فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    0
  • دوره: 

    8
  • شماره: 

    3 (ویژه نامه ناباروری 3)
  • صفحات: 

    106-106
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    851
  • دانلود: 

    0
چکیده: 

تکنولوژی جدید در زمینه ناباروری باعث شده است که برای درمان مردان عقیم که آزوسپرم بوده اند تحولی ایجاد نماید به طوری که اسپرم با تعداد محدودی که از طریق پونکسیون اپیدیدیم PESA یا با استخراج آن از نسج بیضه TESE حاصل می شود با روش میکرواینجکشن TCSI امکان باروری داشته باشد. لذا با توجه به موقعیت پیش آمده در درمان این افراد یافتن همان تعداد کم اسپرمها نیز اهمیت پیدا کرده است و از طرفی Silber مشخص کرده است که 50% موارد آزوسپرمی غیر انسدادی دارای کانونهای اسپرماتوژنر هستند. بنابراین چنانچه به روشهای مناسبی دسترسی پیدا کرد امکان یافتن تعداد کم اسپرم در بیماران و باروری وجود دارد. مطالعات مختلفی از نظر بیوفیزیکی و وضعیت ظاهری بیضه ها، میزان عروق آن، آزمایشات هورمونی، ایمونولوژی و همچنین چگونگی نمونه برداری انجام شده تا بهترین و موثرترین راه در مشخص کردن و استخراج اسپرم از بیضه شناخته شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 851

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    127-136
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    25
  • دانلود: 

    0
چکیده: 

Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained network. The dataset presented in this article contains 3000 images downloaded from online Iranian car sales companies, including Divar and Bama sites, which are manually labeled in three classes: car, truck, and bus. The labels are in the form of 5765 bounding boxes, which characterize the vehicles in the image with high accuracy, ultimately resulting in a unique dataset that is made available for public use.The YOLOv8s algorithm, trained on this dataset, achieves an impressive final precision of 91.7% for validation images. The Mean Average Precision (mAP) at a 50% threshold is recorded at 92.6%. This precision is considered suitable for city vehicle detection networks. Notably, when comparing the YOLOv8s algorithm trained with this dataset to YOLOv8s trained with the COCO dataset, there is a remarkable 10% increase in mAP at 50% and an approximately 22% improvement in the mAP range of 50% to 95%.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 25

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Deshpande H. | SINGH A. | Herunde H.

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    9
  • شماره: 

    1
  • صفحات: 

    46-64
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    244
  • دانلود: 

    0
چکیده: 

Computer Vision is a field of study that helps to develop techniques to identify images and displays. It has various features like image recognition, object detection and image creation, etc. object detection is used for face detection, vehicle detection, web images, and safety systems. Its algorithms are Region-based Convolutional Neural Networks (RCNN), Faster-RCNN and You Only Look Once Method (YOLO) that have shown state-of-the-art performance. Of these, YOLO is better in speed compared to accuracy. It has efficient object detection without compromising on performance.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 244

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

NEURAL NETWORKS

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    155
  • شماره: 

    -
  • صفحات: 

    439-450
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    36
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 36

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    33
  • شماره: 

    2 (TRANSACTIONS B: Applications)
  • صفحات: 

    337-343
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    196
  • دانلود: 

    0
چکیده: 

The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and correct detection probabilities. In order to illustrate the effective application of the introduced approach in the case of the generic SAR system, the results are presented of the calculation of the detection characteristics of the signal from the extended object surrounded by a rough surface. It is shown that the analysis allows us to substantiate the structure of the SAR signal processing channel and to obtain the improved relations for the radio observation characteristics in this case. The efficiency of the optimal signal processing in SAR systems can also be determined without the approximate calculations involved.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 196

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1392
  • دوره: 

    10
  • شماره: 

    2
  • صفحات: 

    69-85
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1490
  • دانلود: 

    588
چکیده: 

در این مقاله مکانیزمی برای تبدیل ساختاری دوطرفه نمودار کلاس UML و توصیفات object-Z پیشنهاد می گردد. در مکانیزم پیشنهادی برای تبدیل المان های مدل سازی نمودار کلاس و توصیفات object-Z به یکدیگر، قواعد ساخت یافته ای تعریف شده است. تبدیل نمودار کلاس به عنوان یکی از پرکاربردترین نمودارهای زبان بصری UML و توصیف زبان صوری object-Z به یکدیگر، بستر مناسبی را برای بهره مندی توامان از مزایای منحصر به فرد روش های مدل سازی صوری و بصری فراهم می نماید. به منظور امکان سنجی مکانیزم پیشنهادی، یک مطالعه موردی بر روی سیستم آسانسور چندکابینه ارائه می گردد. نتایج مطالعه مذکور حاکی از امکان پذیر بودن مکانیزم پیشنهادی است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1490

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 588 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نشریه: 

Scientia Iranica

اطلاعات دوره: 
  • سال: 

    2007
  • دوره: 

    14
  • شماره: 

    6
  • صفحات: 

    599-611
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    426
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

In this paper, a design and construction method for an omnidirectional vision system is described, including how to use it on autonomous soccer robots for object detection, localization and, also, collision avoidance in the middle size league of RoboCup. This vision system uses two mirrors, flat and hyperbolic. The flat mirror is used for detecting very close objects around the robot body and the hyperbolic one is used as a global viewing device to construct a world model for the soccer field. This world model contains information about the position and orientation of the robot itself and the position of other objects in a fixed coordinate system. In addition, a fast object detection method is introduced. It reduces the entire search space of an image into a small number of pixels, using a new idea that is called jump points. The objects are detected by examining the color of pixels overlapping these jump points and a few pixels in their neighborhood. Two fast and robust localization methods are introduced, using the angle of several fixed landmarks on the field and the perpendicular borderlines of the field. Borderline detection uses the clustering of candidate points and the Hough transform. In addition, the omnidirectional viewing system is combined with a front view that uses a plain CCD camera. This combination provided a total vision system solution that was tested in the RoboCup 2001 competitions in Seattle USA. Highly satisfactory results were obtained, both in object detection and localization in desired real-time speed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 426

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    4
تعامل: 
  • بازدید: 

    138
  • دانلود: 

    0
چکیده: 

IN THIS PAPER, A NEW APPROACH IS PROPOSED FOR TRACKING MANEUVERING TARGET BY IMPROVING THE BASIC SIR ALGORITHM. WE PROPOSED A DYNAMIC MODEL FOR MANEUVERING TARGET. IF CHANGES OF TARGET MODEL ARE LARGER THAN A PREDETERMINED THRESHOLD, THEN THE TARGET MODEL WILL BE UPDATED. PRACTICAL RESULTS SHOW THAT OUR PROPOSED APPROACH CONSIDERABLY IMPROVES ACCURATE TRACKING OF A MANEUVERING object. WE WILL COMPARE OUR PROPOSED APPROACH WITH THE BASIC SIR ALGORITHM IN TRACKING A SINGLE MANEUVERING AIRCRAFT.RESULTS OF OUR PROPOSED ALGORITHM ARE ALSO ILLUSTRATED IN TRACKING DIFFERENT MANEUVERING TARGETS ON FEW REAL-WORLD CASE STUDY VIDEOS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 138

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    13
  • شماره: 

    1
  • صفحات: 

    62-80
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    144
  • دانلود: 

    0
چکیده: 

object detection has been one of the areas of interest of research community for over years and has made significant advances in its journey so far. There is a tremendous scope in the applications that would benefit with more innovations in the domain of object detection. Rapid growth in the field of machine learning has complemented the efforts in this area and in the recent times, research community has contributed a lot in real time object detection. In the current work, authors have implemented real time object detection and have made efforts to improve the accuracy of the detection mechanism. In the current research, we have used ssd_v2_inception_coco model as Single Shot detection models deliver significantly better results. A dataset of more than 100 raw images is used for training and then xml files are generated using labellimg. Tensor flow records generated are passed through training pipelines using the proposed model. OpenCV captures real-time images and CNN performs convolution operations on images. The real time object detection delivers an accuracy of 92. 7%, which is an improvement over some of the existing models already proposed earlier. Model detects hundreds of objects simultaneously. In the proposed model, accuracy of object detection significantly improvises over existing methodologies in practice. There is a substantial dataset to evaluate the accuracy of proposed model. The model may be readily useful for object detection applications including parking lots, human identification, and inventory management.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 144

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Naeimi Asl Farzaneh | Shahhoseini Reza

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    8
  • شماره: 

    1
  • صفحات: 

    1-13
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    12
  • دانلود: 

    0
چکیده: 

This study addresses the challenges of change detection in Very High Resolution (VHR) satellite imagery, which are characterized by complex feature interactions, noise sensitivity, and intricate land use changes. We propose a novel approach that integrates object-based, feature-based, and dual learning-based methods to enhance the detection of changes on the Earth's surface using bi-temporal images. Our methodology begins with the separate segmentation of VHR images to manage complexities and account for pixel relationships. We then enrich spectral bands with additional textural, mathematical, and geometrical features derived from paired images to conduct a comprehensive conceptual analysis. Finally, we implement two categories of supervised classifiers—individual and ensemble—to generate a binary change map that classifies regions as either changed or unchanged. The results from experiments on two VHR datasets demonstrate that our approach outperforms traditional methods, achieving the highest F1-score and Intersection over Union (IoU) of 99.02% and 96.78%, respectively. The novelty of this research lies in the integration of object-based, feature-based, and learning-based approaches, leading to a comprehensive feature extraction process. Additionally, our method creates detailed change detection maps with numerous homogeneous areas, contributing significantly to advancements in the field.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 12

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button